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SOME NEW CONNECTIONS BETWEEN
PROBABILITY AND CLASSICAL ANALYSIS

By WILLIAM FELLERfY

ecent research has revealed the intimate relationship between potential
theory and Markov processes, and has supplied new examples of the
fertility of a probabilistic approach to problems of classical analysis.
Choquet’s work on capacities, the Beurling-Deny theory of general
potentials, Doob’s probabilistic approach to the Dirichlet problem, and
Hunt’s basic results concerning potentials and Markov processes are
closely related, despite the diversity of formal appearances and
methods. I had hoped in this address to discuss the interconnections
between these theories, but the task proved too overwhelming for the
limited time and my own limitations. I am therefore compelled un-
ashamedly to restrict this talk to some related aspects of my own work.
I propose to describe the two boundaries and topologies induced by the
annihilators of certain operators; to discuss their justification, their use
for an abstract theory of so-called boundary value problems, and their
connection with an invariant theory of operators of local character
(which generalize the ill-defined notion of differential operators).

I shall not endeavor to develop a theory or even to state results in
a precise form. Rather I shall try to explain the background and the
purpose of the theory by means of a few simple e:\:amples,. prefe.rably
using classical harmonic functions. Although everything W‘lu be inter-
preted probabilistically, the main emphasis 1s purely analytic.

In the sequel D will always denote a topological.SPf"ce and G the
familiar Banach space of continuous functions in D with

”f” = SUPpeDp lf(P)|-

: i ions.
Unless otherwise stated all operators will act on continuous functio

1. Boundaries induced by positive operators
art with a probabilistic

1.1. Harmonic functions. It is convenient to st
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interpretation of harmonic functions by means of a1 directly and
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Let D be the open unit dise in the plane and for each point p € D let
D, = D be the greatest open dise centered at p and contained in D,
\\ e shall study the operator 7" from C to G for which 7'f(p) equals the
arithmetic mean of f over D,,. Thus

~

Tf= | K(..q)f(a)dq. (1)
JD
where K (p, q) equals |])D|“ or O accordingasge D,orq&D,. Similarly,
T is induced by a kernel K.

This 7' determines a discrete random walk with arbitrary initial position
p e D in which K™(p, .) is the density of the random position @, € D
after n steps. We obtain a well-defined measure in the space of all
sequences {@,} (@, = p. @, € D) and it can be shown that almost all
sequences are convergent to a point of the boundary circle. For our
purposes a less refined purely analytical statement will suffice. For any
set A = D the probability that @, € A equals T"x(p), where y is the
characteristic function of A. It is easily verified that 7f — 0 for each
[ € Cvanishing at the boundary. Therefore 7"y — 0 for each compact 4,
and this is equivalent to the statement that ), approaches the boundary
in probability.

This result can be rendered more precise as follows. Let I' = B be
a set of the boundary circle B, and . the harmonic function determined,
in the classical sense, by the boundary values 1 on I" and 0 on B—T.
Then wp(p) ts the probability that ), approaches I' as n — o0.

Harmonic functions appear in this context because they are eigen-
functions satisfying ¢ = T'¢. The set P of all solutions of this equation
such that 0 < ¢ <1 is a convex set and the harmonic functions up
coincide with its extremals. The sets

={qeD|up(qg) > 1—¢} (2)

are a system of deleted neighborhoods of I'. If y is the characteristic
function of I', then 7"y — u,, and hence
up(p) = limprob{@, € I' }. (3)
n—>w
From this it follows easily that w;.(p) is the probability of an actual
asymptotic approach to I', but for our purposes the weaker statement
(3) fully suffices. [An alternative proof is given in the next section. ]
The point to be emphasized is that this set-up is not of an analytic
nature but can be carried out abstractly for a large class of opemtors in
an arbitrary topological space D. No boundary need be defined a pr jort,
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and it is natural to define a boundary in such a way that the sets I', become
neighborhoods of the corresponding boundary sets. Again, D may possess
a boundary which does not admit of the interpretation of I', as neigh-
borhoods, and it may be necessary to introduce a new boundary appro-
priate to the study of the transformation T. The simplest example is
obtained by mapping the unit disc 1 conformally onto a domain D whose
boundary 5 is of a complicated structure with prime ends, ete. Under
this conformal map 7" and its random walk are carried over to [, the
new eigenfunctions are again harmonic, but obviously the convergence
properties of the random walk remain true only if we replace the ‘natural’
boundary of D by the boundary and topology induced by the conformal
map. This, of course, is a probabilistic version of the now familiar ob-
servation due to Martin'? that the study of harmonic functions in
complicated domains requires the introduction of an appropriate
boundary.
We pass to a more interesting example of a different kind.

1.2. Relativization and isomorphisms. For an arbitrary (not
necessarily bounded) i/ > 0 harmonic in the disc D we define a new

transformation by m
ransformation by T, f = y-1T(f). (4)
Its kernel is given by

K, (p,q) =y (p) K(p,q)¥(q). (5)

A function » > 0 satisfies v = T,v if and only if ¢ =) satisfies
¢ = T¢ (is harmonic). We have thus a 1-1 correspondence between the
positive eigenfunctions of 7' and 7, with 1 and s corresponding to ¢!
and 1, respectively.

Operators of this form will be called similar to 7'. Clearly similarity is
transitive, symmetric and reflexive. A closely related transformation
has been used by Brelot™ for harmonic functions. We shall see that the
notion of similarity is exceedingly useful, and has its counterpart in similar
semigroups and differential equations. Here we use it to illustrate the
notion of the boundary induced by T}, and to derive a new proof for our
interpretation of the harmonic function ..

Denote by B and B, respectively, the sets of positive eigenfunctions
of 7"and 7}, bounded by 1. For simplicity of exposition consider the case
¥ = up where i is an extremal of 3. The mapping uy «» ¢ establishes
a 1-1 correspondence between B, and the subset of B of elements such
that ¢ < w;; this correspondence preserves extremals. Now the struc-
ture of the set B of harmonic functions is best described in terms of the
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‘hatural’ boundary of D. Since relations between 7', R, and Dy B
with the natural topology will carry over to 7}, 18, and D u T, the et T
plays for 7, the role that B plays for 7' and may be considered the
boundary induced by T,,.

The same conclusion may be reached probabilistically. From
Y1 = T,y it follows that 7 f — 0 for each fe G vanishing along T,
Hence if y is the characteristic function of a neighborhood U of I' we
have Tjx — 1: thus in the random walk associated with 7}, the paths
converge in probability to the boundary set I'.

This remark leads to a new proof of the interpretation of up given in
the preceding section. Using (5) it is seen that the relation 7'} y — 1 may
be rewritten as »

J Ko(p, q) (q)dg — r(p). (6)
U
Now the neighborhood U7 of I' may be chosen so small that in it iy = uy,
is arbitrarily close to 1 and we conclude that in the 7-random walk
P{Q, € U} — up(p) for each neighborhood of I'. This is a slightly
weakened version of the interpretation of wp(p) as probability of an
asymptotic approach to I'.

Given this interpretation of u; we see that in the T-random walk
K, represents the conditional transition probability density given the
event that the paths converge to I'. Probabilistically, then, the T,-random
walk is obtained from the T-random walk by conditioning or relativization:
in the T-walk we pay attention only to paths converging to . More
precisely, let @ be the set of all sequences {Q,.}, (€9 = P> Q, € D), with the
measure P induced by 7', and let ©. be the subset of sequences convergiig
to I'. Then the 7),-walk assigns zero probability to ©—Cp and pro-
bability P{3(} + P{&} = P{2} /(p) to the subsets A = e.

1.3. Abstract construction; restricted and total boundaries. We
pass to the extreme case where D is the set of integers 1, 2, ..., with t.he
discrete topology. This has the advantage that no prcconceived s
tuitive notion of boundary obscures the view. The boundaries may be of
a complicated topological structure and the present case will clearly
reveal the features and problems of the most general set-up.

C is now the space of bounded functions and we write f € C as a colum?
matrix with elements (). We consider an operator 7' defined by a matr*
IT with elements I1(7, j) so that in matrix notation 7f = [1f. The matrix
I1 is supposed to be substochastic, that is, its elements are = 0, its TOW

sums < 1. We denote by S8 the set of all eigenvectors ¢ such that ¢ = ¢
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and 0 < ¢ < 1, and by £ the set of all (possibly unbounded) solutions
¢ >00f p= [Ig. To avoid trivialities we shall assume: (i) each ¢ is
strictly positive, (i) ‘B contains at least two independent vectors.
[Condition (i) eliminates the nuisance of partitioned matrices requiring
words rather than thoughts; (ii) eliminates empty and single-point
boundaries. |

Again IT may be interpreted as the matrix of transition probabilities
in arandom walk (Markov chain), the row defects 1 — XT1(., j) accounting
for the possibility of a termination of the process. For an arbitrary
iitial position 7 € ) we have a probability measure on the set © of all
terminating or infinite sequences of integers {@,}. The subset @™ of
sequences of length = n has probability X;117(i, j), and hence the
probability of the set @) of infinite sequences is given by the th
clement of ¢ = lim I1"1. Note that ¢ is the maximal element of .

We proceed to introduce a restricted or B-boundary B, and a fotal or
R -houndary B® = B. We begin with the extremely simple special case
where ¢ = I1¢h has only finitely many independent solutions.

(a) The W-boundary. Let B be spanned by N mnon-zero vectors
PV, ... ™. These can be chosen as extremal elements of B, which
amounts to saying that [@®| =1 and q-g = @D+ ...+ Y. For fixed
kand e > 0 put T'™ = {i | g¥)(z) > 1 —¢€}. As €= 0 we get a nest of non-
empty sets with empty intersection; from ¢ < 1 we conclude that for
fixed ¢ > } the sets I and T'®) are non-overlapping (j + ).

The restricted boundary B consists of N points £, ..y S such that
M is a deleted neighborhood of f®. We can extend the definition of
each ¢ € R to D u B by putting ¢ (f*) =1 or 0 according as j = k or
J % k. Then each ¢ is continuous in D v B, and the ¢ Dirichlet problem’
1s soluble: to prescribed boundary values there corresponds exactly
one ¢ e P,

Finally with an obvious notation, II"(i, ['®) > ¢®(1), as n —> 0 for
cach fixed ¢. From this one deduces that in the random walk startipg
at ¢ the sample sequences {@,} converge with probability (,5(".‘)(.17) to A®);
With probability 1—¢(i) they terminate; and the probability of no
tonvergence is 0.

(b) The P=-boundary can be introduced directly, but it is more con-
venient to use the similarity transformation introduced in § 1.2. A matrix

I, is similar to 11 if either I, = IT or

I,(,4) = y'0) 1@, j) ¥ () (7)

Where & coskre alivae . eflexive smd
here ¢ ¢ R=, We recall that similarity 18 transitive, refl ,
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symmetric and that the mapping ¢« v where »(i) = P(1)1r(2)
establishes a 1-1 correspondence between p* and B 7.

To see the relation between B and the corresponding restricted boun-
dary B, induced by II, consider the typical case ¢ = @p'V+=. To
dY, ..., M and to each unbounded ¢ € L= there correspond unbounded
vectors in 17 and the boundary B, reduces to two points whose neigh-
borhoods coincide with the neighborhoods of ™ and f®. For the inter-
pretation of this I, in terms of conditional probabilities see §1.2.

In general, if B, is the restricted boundary induced by II, we shall
identify points of 5 and B, with coinciding systems of neighborhoods.
With this identification we define the total boundary B* induced by 11
as the union of the boundaries B, as g ranges over 1. All stmnilar matrices
induce the same total boundary, and if 8= is spanned by J/ independent
vectors, then B* contains exactly M points.

Note that D v B* need not be compact. (No compactification seems
natural or desirable for our purposes.)

(¢) Themaximal ideal boundaries. When 8 is not spanned by denumer-
ably many elements the extremal elements of '} do not correspond to
points of the prospective boundary, but rather to sets of positive
capacity. No satisfactory definition of points and neighborhoods is
known. Now both ‘® and 8* have a lattice structure similar to that of
harmonic functions, and the correspondence between $* and B is a
lattice isomorphism. This makes it possible to define points of B and B*
by maximal ideals in P and 8, respectively (see/). Unfortunately these
boundaries are absurdly large. For example, sample sequences converge
to sets rather than to points; each ¢ € ‘R has continuous boundary values
whichis at variance with the desirable model of harmonicfunctionin adise
D with the natural topology. That the lattices } and R= are isomorphic
to lattices of continuous functions on some Hausdorff spaces is, of course,
well known (see, for example, Kadison!!3)). To us the main point is that
this Hausdorff space appears as a boundary of D and is useful as such.

Our maximal ideal boundaries serve well for an orientation and as
a guide, but the introduction of a less clumsy and more appropriate
boundary is an open, and promising, problem.

[Postscript. A partial solution has now been obtained by J. L. Doob ™
who uses Martin’s original construction. The Martin boundary 1s
sufficiently small for sample sequences to converge toward points. In
the finite case, however, this boundary may be bigger than ours; its
neighborhoods are larger and this could lead to difficulties in connection
with boundary value problems and non-minimal semigroups.]
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2. Semigroups and differential equations

2.1. Orientation. We turn to the more interesting study of a family
of positive operators {7'(t)}, 1 = 0, from C to C with |7()| < 1, and with
the semigroup property 7'(¢+s) = 7'(t) 7'(s). The probabilistic counter-
part to a fixed 7'(f) is a (possibly terminating) random walk with jumps
taking place at times 7, 2, .... To the whole semigroup there corresponds
a random motion (Markov process) in D with continuous time: the
sample space @ is the space of functions @ defined in an interval
0 <t <7 <00 such that Q(f)e D, and Q(0) = pe D is a given point.
The semigroup induces a P-measure in @ such that for each Borel set
A<= D we have P{Q(t)e A} = T(t) x(p) where y is the characteristic
function of A. Needless to say with the P-measure almost all paths
are reasonably regular. In particular, they are continuous when the
semigroup is generated by a differential operator (“diffusion processes’).

If a path @ is defined only within a finite interval 0 < t < 7 (that is,
if the process terminates at time 7) then, except on a null set of paths,
ast b 7either Q(t) — ¢ € D or Q(f) has no point of accumulationin . In
the first case we say that the process terminates at ¢, in the second that it
terminates ‘at theboundary’. However,itremainsto justify thisexpression.

For this purpose we shall have to introduce a boundary B induced by
the generator Q of the semigroup. It will be seen that all operators
T(t), t > 0, induce the same boundary m < B, and that the process either
terminates at B—1m or approaches m asymplotically without reaching it.

We say that the semigroup is generated by € if for a dense set of
o ;
smooth’ fe G I,j_lﬁ)t_l{T(t)f_f} = QfeC (8)
in the sense of pointwise convergence. According to this definition,
introduced in1, Q may generate many semigroups; the infinitesimal
generator in the sense of Hille!!% is a contraction Q| of Q obtained by
imposing lateral conditions (see §4.3).

Putting 7'(t) f = w(, .) the function = will satisfy the functional
equation u, = Qu with the ‘initial condition’ «(0, .) = f. (This is liter-
ally true for smooth f, and in an operational sense for all ) In classical
terms we are concerned with ‘solving’ this equation. We consider first
a family of ‘similar’ generators and then the relation between generators
with the same annihilators.

2.2. The Laplacian. Isomorphisms. We return to harmonic func-
tions and take as example the familiar heat equation w, = Aw in the unit
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dise D. Among the positive semigroups generated by'A there exists a
minimal semigroup. In classical terms u(t, .) = T(t) f is the .Sf)IUt'ion of
w, = Au with initial condition (0, = mld.bound(lrg./ condition th‘at U
vanishes at the circle 5. Associated with it is the Wiener process in D
torminating at B. Physically the process represents a homogeneous
diffusion inbl) with ‘absorbing boundaries’, or heat conduction with zero

temperature at the boundary.

Tor this minimal semigroup |7(t)| < 1 and therefore the boundary 7
induced by 7'(t) is empty, but we are concerned with the boundary in-
duced by l‘uu'nmnic functions, that is, the annihilators of the generator A,
In this connection, of course, we adhere to the natural topology of the
closed disc. As in § 1.1 let be the harmonic function in ) determined
by the boundary values 1 on theset I' © Band 0on B—1I". For the process
starting at the point p € ) we have the following analogue to the results
of §1.1.

wp(p) is the probability that the process terminates at the boundary set I
The probability that this happens hefore time t is »(f, p) where v is the
solution of », = Av with zero initial values and boundary values 1 on I’
and 0 on BT

This assertion becomes plausible on observing that for bounded

harmonic i obviously T(t)yr = P —o(t, .), (9)

where », = Av and » has zero initial values and boundary values coin-
ciding (almost everywhere) with those of yr. Now T'(t) 1(p) = P{Q(t) € D}
is the probability that the process does not terminate before it. Together
with (9) this implies the assertion for the particular case up, = 1, or I' =B,
at least if we accept as fact that the process does not terminate in the
interior of D. We shall only indicate how the general assertion may be
reduced to this particular case by a generalization of the method of
similarity transformations or isomorphisms, introduced in § 1.2.

Tor positive harmonic 3 we define a new semigroup of positive oper-

ators from C to C by
Ty(t)f = Y21 (f)- (10)
If 0 < f<1then 0<7T(t)f <y <T(t)y <1 and hence |Z,(t)] < L
A glance at (8) shows that the semigroup {7} is generated by the
operator A, defined by
Ayf =Y TA(SY). (11
For simplicity of exposition we now restrict the consideration to yr = ur:

lilrst note that ¢y is unbounded near B —I" and close to 1 near I, and
" ”m . = 3 . . .
that 7),(t)"' < 41, From this it is easy to conclude that the random
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process corresponding to {T),} terminates at I'. Our interpretation of u, is
obtained from this by adapting the argument following (6). As at the
end of §1.2 we remark that the kernel of the 7),-semigroup represents
the conditional transition probability densities of the 7-process given
that the path terminates at I'. In the sense explained above the e
process 1s therefore simply the restriction of the T-process to the paths
termanating at 1.

Returning to the analytical relationship between the 7'- and the
T¢-sc*111ig1‘0up note that A,#(,‘) = 0 if and only if ¢/ is harmonic. The
positive (possible unbounded) annihilators of A and A, stand in a 1-1
correspondence (which is a lattice isomorphism). The bounded anni-
hilators of A, correspond to the harmonic functions dominated by
i/ = up, and thus the set I' is the appropriate boundary for {7} just
as the circle B is for {7'}. In short we find the same situation as
in §1.3.

The circle B, induced by the harmonic functions, represents the ‘total’
boundary for the family of all similar semigroups {T),(t)} [or all differential
equations w, = Ay u]. The boundary induced by the bounded annihilators
of A, corresponds to the subset I' = B.

That T is the appropriate boundary for the 7},-semigroup reflects the
fact that the common range of the transformations Ty(t) is characterized
by the side condition that Ty(t) f vanishes along T just as T'(t)f vanishes
along B.

We have here the simplest example of a ‘boundary condition’ and
see that it relates to our boundary rather than the ‘natural’ one. In the
terminology of classical differential equations, A, is a differential
operator with coefficients singular along B —T', and boundary conditions
can be imposed only along I'. How vague and unsatisfactory such
descriptions can be is known from the simple Sturm-Liouville theory
in one dimension.

2.3. The active boundary. Singular operators. A new pheno-
menon may be described in connection with the operator 2 = wA In
the dise D where @ > 0 is continuous in D but may tend to zero or in-
finity near the cirele B. This operator has the same annihilators as the
Laplacian A and it is interesting to compare the semigroups generated
by wA with those generated by A. In classical terms we are concerned
with the integration of the parabolic differential equation %, = wAu
which may be singular owing to the behavior of @ near B. We describe
here the main features of the theory carried out in'® for denumerable
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spaces (the Kolmogoroft differential equations) by methods of much
wider applicability.

There exists a uniquely determined m inimal positive semigroup
{T(t)} generated by wA and forit |7(t)| < 1. However, for an appropriate
choice of @ it may happen that 7'(f) 1 = 1: the minimal semigroup is in
this case unique; by contrast to the heat equation no boundary condi-
tions need or can be imposed in this case, and the induced random
process (diffusion) does not terminate at a finite time.

With an arbitrary @ > 0 let {T(t)} be the minimal semigroup generated
by @A in the unit disc 1. Then the following is true.

(@) The passive boundary . There exists a set 7 = B of the unit circle
(determined up to a null set) such that for each ¢ > 0 the eigenfunctions
¢ of ¢ = T(t) ¢ such that 0 < ¢ < 1 coincide with the positive harmonic
functions (the annihilators of ®wA) dominated by u,, the harmonic
function with boundary values 1 on 7 and 0 on B —. In this sense the
boundary induced by each T(t) coincides with . In the case » = 1 (the
heat equation) 7 is empty. For any set I' = 7 the value up(p) is the
probability in the 7'(f)-process starting at the point p e D that I'is
asymptotically approached as t — o0} the probability of reaching I' at a
finite time 1is zero.

(b) The active boundary A = B—m. For each set I' = A the value
up(p) is the probability that the process will terminate at I'. The pro-
bability that this occurs before time ¢ equals »(f, p) where v is a solution
of v = wAv with zero initial values and boundary values 1 on I’ and
Oon 4-T.

No boundary conditions can be imposed along the passive boundary.
This summary explains the relations between minimal semigroups
generated by operators with the same annihilators.

In analytic terms we may characterize the active and passive boun-
daries as follows. For A > 0 the bounded positive solutions of

Ap—wAp =0 (12)

form a convex set B, endowed by a lattice structure similar to that of
harmonic functions. Now there exists a 1-1 correspondence (lattice
isomorphism) between the B, for A > 0 on one hand, and the harmoni

functions dominated by w4 on the other hand. Thus the active houndary
is induced by each B, for A > 0. An alternative interpretation may be
given in terms of the resolvent (A —wA)~ and a discrete random walk

associated with it.
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3. The adjoint boundary

3.1. Duality. So far we have restricted consideration to operators
acting on functions. Actually the study of an operator 7' from C to C
cannot be separated from the study of the adjoint operator 7'* which
takes measures into measures. In probability 7 is the primary notion,
although we are compelled to take 7" as the basic tool of the theory of
Markov processes. The reasons are discussed in!7; see also Dynkin®,

To avoid new notations let D) be an open domain of the plane and
suppose that 7" is of the form (1) with an arbitrary positive kernel. The
adjoint transformation acts on all measures, but it is convenient to
consider only absolutely continuous measures and treat 7'* as an operator
on densities. Let then L be the Banach space of integrable functions
in D with the usual norm

N(u) = [ lue| dg. (13)
Jo
Then 7 as an operator from L to L carries u € L into

1% (2) = [ w(p) K(p, .)dp. (14)

LY

It is positive and N(7'*) < 1. The transformation (14) remains meaning-
ful for all # > 0, although the integral may diverge.

In principle the construction of a boundary induced by 7'* should
follow the method used for 7, but fortunately an extremely simple trick
will save us the trouble of « repeated construction.

We start from the set P* of all finite eigenfunctions v > 0 of u = 7T*u.
They need not be integrable, but for simplicity we shall suppose that each
u € P* is strictly positive and continuous in D.

For an arbitrary u € 0* define a kernel X by

K(p,q) = ulq) K(g.p) v (p), (15)
where p e D, g € D. Clearly

K(p,q)dq =1 (16)
D

for each p, and thus K represents the kernel of a new transformation
Tfrom C to C.

If » € B* then ¢p = vu ! is a continuous eigenfunction of T’(,’) = ¢, not
necessarily bounded. Conversely, to each positive eigenfunction of
T = ¢ there corresponds the element v = ¢u e P*. This establishes a
I-1 correspondence between SB* and the set = of positive eigen-
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functions of T'. (These sets are 011(10}\'0(1 with lartticc“ structures afnd the
correspondence is a lattice isomorphism, but we omit 1.hese details.) Tn
§1.3 we have seen that 7 inducss a total bo.zuulury relative to the set %w
;wfnll positive cif_rcnfunctionsof Te = ¢. If.m 05) we replace u by another
element of P* then 7' is rcplacod by a similar operator (a.s defined in
§1.3) and the total boundary remains unchanged. Tl?ls justifies the
Definition. The adjoint boundary B* induced by T is the total boundary

~,

induced by the operator T acting from G to C. It is independent of the
choice of u € B*.

Probabilistic interpretation. (‘onsider first the case where N(u)=1
and interpret u as the stationary probability density of the position
(at any time) in a Markov chain with transition probability densities K.
This process is defined for all integral values of the time parameter from
— o to oo, Int® Kolmogoroft pointed out that in this process K(p.q)
represents the conditional probability density of the position ¢ at time
n given that at time n+ 1 the position is p. Moreover, the same relation-
ship exists between the higher order transition probability densities of
the K-chain and the K-chain. In other words, for the K-chain, K repre-
sents the transition probability densities in the negative time direction:
the K-chain is obtained from the K-chain by reversing the time direction.

Roughly speaking, then, the boundary induced by 7' represents the
directions towards which the sample sequences can converge, and the
adjoint boundary the directions from which the process can originate.
This description applies to, and becomes more concrete in connection
with, continuous time parameter processes and leads to an interpretation
of the boundary conditions for differential equations.

Analytically there is no change in the situation when the integral (13)
diverges, and it is therefore annoying that Kolmogoroft’s intuitive
interpretation of K breaks down. However, as Derman® pointed out,

it may be salvaged for non-integrable » by considering a whole family
of chains.

3.2. Relations between the two topologies. It is natural to ask
whether and how the topology of D u B induced by 7' is related to the
topology of D u B* induced by 7'*. A first answer is that every imagin-
able situation can arise. For the familiar symmetric operators of analysis
the two spaces are identical. Still si1111)101" is the other extreme, where B
and B* are disjoint and have disjoint neighborhoods. Most vexing are

the mt;crmc(lmt.e cases. Among the examples given in'® there appears the
following configuration:
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The boundary B consists of m points M, A and B* consists of
n points Y@, ..., y™. Bach deleted neighborhood of B is a deleted neigh-
borhood of B* and vice versa. However, each neighborhood of ®
contains a neighborhood of My A® and each neighborhood of M or
A is contained in a neighborhood of y, Roughly speaking, the point
YV is the same as the set S0y p@, Similarly, two points of B may be
equivalent to the union of the three points of B*, ete.

These phenomena lead to many new problems connecting topological
and analytical problems and are interesting in connection with boundary
conditions; see the end of §4.3.

4. Background and program

4.1. The problems. Given a topological space D) an important
problem of probability theory is to find the most general Markov process
on D. (Hunt’s beautiful results in "4 permit us to reformulate this in
terms of potentials.) Space does not permit us here to analyze why and
how this problem is reduced to that of finding semigroups of operators
from G to C. Anyhow, the following slightly more general problem is of
obvious interest in itself.

Find all operators ) generating [in the sense of (8)] positive semigroups
{T(t)} from G to G. We have omitted the restriction |7(t)| < 1, which
becomes more and more untenable even for probability theory and
excludes semigroups of interest in potential theory, in diffusion (with
creation of masses), and heat conduction. [We note in passing that our
method of isomorphisms cannot be fully exploited as long as one adheres
to the conventional Banach norm. It would be interesting and highly
desirable to reformulate the whole theory free from restriction to normed
spaces utilizing the Kothe—Mackey concept of dual spaces. ]

Given a generator Q we face the problem of finding all positive semi-
groups generated by it and to discover the analytic and probabilistic relations
among them. The first part leads to a strict formulation of the vague and
unsatisf&ctory notion ‘boundary conditions’ for differential equations.
The problem is to construct all possible lateral conditions; in this form
it is analogous to the construction of self-adjoint contractions in Hilbert
space, but it leads to new angles.

Finally, it ig important to find the generator of the adjoint semigroup.
(In special cases this amounts to finding the physicist’s Fokker—Planck,
OF continuity, equation.)

This point of view links together operators which classically seemed
worldg apart. or example, when 2 is the set of integers we are led to

6 TP
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infinite systems of ordinary differential equations that can be treated
precisely as partial differential equations; in fact, we obtain the boundary
conditions with an analogue of ‘normal derivatives’ at the boundary in
a form which is applicable also, say, to harmonic functions in a domain
with non-differentiable boundary. Again, when D) is the real line, the
semigroup for which wu(t, .) = T'(t)[ is harmonic in the half plane ¢ > 0
is generated by a Riesz potential, and Elliott™ has shown that its restric-
tion to finite intervals is closely related to a second-order differential
operator.

It is possible now to see, in rough outlines, the way to a rather general

solution of the problems stated. Space does not permit us to go into
details, and we proceed instead to indicate how the first problem is
connected with an intrinsie theory of differential operators (or their
analogue) in arbitrary spaces.
4.2. Operators of local character. The concept of a differential
operator is defined only in special spaces and depends on a co-ordinate
system. We replace it by the more meaningful and more general notion
of an operator of local character. The positive semigroups generated by
an operator of local character present an obvious analytic interest.
(The corresponding Markov processes are the only ones whose path
functions are continuous with probability one; see Ray!¥.) They are
anatural generalization of the second-order elliptic differential operators
in Euclidean spaces: on one hand, such operators share the main pro-
perties of the Laplacian and generate positive semigroups. On the
other hand, the derivation of the diffusion equation based on the local
character condition (which I regret having introduced in '* under the
misleading name of Lindeberg condition) shows that no differential
operator of higher order shares this property.

For an operator  of local character to generate a positive semigroup
such that | 7(¢)| < 1 it is necessary, and very likely also sufficient, that
it have the following positive maximwm property: for each fin the (local)
domain of Q such that f attains a positive local maximum at the point p
one has Qf(p) < 0. Dropping the norm condition ||7'(t)] < 1 leads to
the wealk maximuwm condition which requires Qf(p) < 0 only at points p
such that f(p) = 0 and f < 0 in a neighborhood of p.

Operators of local character with the maximum property promise to
be a fertile analogue in topological spaces of the Laplacian and general
elliptic operators. It is a challenging problem (now within reach) to
find a canonical expression for the operators of this class. A complete
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answer exists only in one dimension, hut unpublished results of
McKean point toward a solution in Euclidean spaces.

The notion of induced boundaries plays an important role in this con-
nection. To explain it, consider an operator Q of local character with the
maximum property in a one-dimensional interval 7. Tt is easily seen that
Q can have at most two independent annihilators. We may suppose, if
necessary, that the domain of € has been extended so that O possesses
the maximal number of annihilators compatible with its definition. We
say then that the point p € I is regular if in a neighborhood N of p there
exist two independent annihilators, that is, if the local topology induced
by Qagrees with the given topology. At a point p near which there exists
only one annihilator, € induces a topology in which each interval has
but one boundary point (is half open). This is reflected both in the
analytic and the probabilistic properties of the corresponding processes.
For example, all paths starting at a deficient point go in one direction
(see Dynkin'¥). Similarly, in an arbitrary topological space D it will be
desirable to avoid singularities and pathologies by requiring that in the
interior of D the local topology induced by €2 agrees with the given
topology.

Anindication of the general character of our operators is obtained from
the canonical form of an operator Q of local character with the positive
maximum property in an open interval I without singular points. It is
given by the following theorem!®. The interval / can be parametrized
by a ‘canonical scale’ a in such a way that each fin the domain of  has
one-sided derivatives with respect to « and they are continuous except
for jumps. (We denote them indiscriminately by f’.) Moreover, there
exist two Borel measures m and y in I, the m-measure of each interval
being positive, such that for each fin the domain of £,

Qf .dm = df' —fdy (17)

in the sense that the integrals are equal. Of course, if m and 7y are abso-
lutely continuous this canonical form reduces to Qf = af" — cf. H?\\:C\'El‘,
this traditional form requires artificial restrictions on.the coeflicients,
whereas (17) is of an intrinsic nature and its theory is simpler and more
flexible. Thus, in the equation of the vibrating string our m 1'(‘31)1'csents
active elastic force?. The form (17)
the force are concentrated at
tificial passages to

the mechanical mass and y an attr
Now covers cases where either the mass or

individual points, which are usually treated by ar

: ) : =
the limit, whereas the generalized form of O makes available once anc

for all the basic existence and expansion theorem.



84 WILLIAM FELLER

4.3. Lateral conditions. A conditioning set X for Q is a set such that
for f € C and each A > A, there exists exactly one solution I € 2 of

A —QF = /. (18)

Using the Hille-Yosida theory it can be shown that each semigroup
senerated by Q corresponds to a conditioning set. For example, the
Tnininml smhigroups generated by € = wA (§2.3) correspond to re-
stricting the domain of £ to functions vanishing at the active boundary,
The 1)1'(;1)]('111 ‘to find a semigroup generated by the differential operator
Q restricted by the conditioning set ¥’ is the rigorous formulation of
the vague and not always soluble problem of ‘integrating the differential
equation u, = Qu with the boundary condition u € X !

For simplicity consider an operator (2 such that for A > 0 the equation
AL — QF = 0 admits exactly m independent solutions £ € G. Then the
active boundary A induced by € consists of m points P, ..., ™. For
example, if Q is a second-order differential operator in one dimension,
say of the form (17), m < 2. All F in the domain of £ will be continuous
in D u A. The solution Fmin of (18) corresponding to the minimal semi-
group generated by Q satisfies the boundary condition Fmin(59)) = 0.
Every other solution is of the form

F = Fmin 4 % (I)(j)g(j), (19)
j=1
where £9 is the solution of A{— Q& = 0 such that £9(f®) =0 or 1
according as j % k or j = k, and where @Y is a certain functional of f.

Our problem now consists in determining these arbitrary functionals
in their dependence on A in such a way that the range X of the transforma-
tion f — I is independent of A, and to describe all possible such ranges
(conditioning sets). In 1 and ®l this problem is solved by a method of
wide applicability. It is interesting that even in the case of differential
equations the lateral condition F € ¥ need not be of local character;
hence the classical notion of boundary condition is too restrictive.

The adjoint semigroup is generated by an operator Q* acting on
measures. It is noteworthy that even for a differential operator € the
adjoint Q* need not be of local character. Tt appears, however, that for
the minimal semigroup Q* shares the local character of Q.

It is customary to consider (in Tuclidean spaces) only differential
f;pemtom {2 which are symmetric or so nearly symmetric that Q and Q*
induce the same boundary. New and interesting phenomena oceur for
truly unsymmetric operators. An abstract formulation of many classical
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problems is to find semigroups generated by Q whose adjoint is generated
by a given formal adjoint Q* of €.

Suppose that the minimal semigroup generated by Q has an adjoint
generated by *. Let the adjoint boundary consist of n points y®, ..., y™
corresponding to n independent solutions 5 of Ay — Q*y = 0. For the
semigroup corresponding to (19) to be generated by Q* it is necessary
and sufficient that each functional ®Y is a linear combination of the
7™®, so that the general solution of our problem involves mn free para-
meters to be determined in such a way that the range of the transforma-
tion (19) be independent of A.

The solution of this problem given in 1% shows clearly the abstract
generalization of the normal derivatives appearing in the mixed boundary
value problem for harmonic functions. (One advantage of the abstract
approach is to derive the boundary conditions in a form that is always
meaningful, whereas the classical normal derivatives impose a regularity
condition on the boundary.)

The general solution seems also to indicate that the topological ques-
tion whether £9 and y* have disjoint neighborhoods is related to the
behavior of the inner product of £9 with 3 as A — oo (see §3.2). How-
ever, the precise way in which the relations between the two topologies
induced by Q are reflected in the analytical properties of {is an open and
promising problem.
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